Search results for "High-Dimensional Inference"

showing 2 items of 2 documents

Extended differential geometric LARS for high-dimensional GLMs with general dispersion parameter

2018

A large class of modeling and prediction problems involves outcomes that belong to an exponential family distribution. Generalized linear models (GLMs) are a standard way of dealing with such situations. Even in high-dimensional feature spaces GLMs can be extended to deal with such situations. Penalized inference approaches, such as the $$\ell _1$$ or SCAD, or extensions of least angle regression, such as dgLARS, have been proposed to deal with GLMs with high-dimensional feature spaces. Although the theory underlying these methods is in principle generic, the implementation has remained restricted to dispersion-free models, such as the Poisson and logistic regression models. The aim of this…

Statistics and ProbabilityGeneralized linear modelMathematical optimizationGeneralized linear modelsPredictor-€“corrector algorithmGeneralized linear model02 engineering and technologyPoisson distributionDANTZIG SELECTOR01 natural sciencesCross-validationHigh-dimensional inferenceTheoretical Computer Science010104 statistics & probabilitysymbols.namesakeExponential familyLEAST ANGLE REGRESSION0202 electrical engineering electronic engineering information engineeringApplied mathematicsStatistics::Methodology0101 mathematicsCROSS-VALIDATIONMathematicsLeast-angle regressionLinear model020206 networking & telecommunicationsProbability and statisticsVARIABLE SELECTIONEfficient estimatorPredictor-corrector algorithmComputational Theory and MathematicsDispersion paremeterLINEAR-MODELSsymbolsSHRINKAGEStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaStatistics and Computing
researchProduct

ℓ1-Penalized Methods in High-Dimensional Gaussian Markov Random Fields

2016

In the last 20 years, we have witnessed the dramatic development of new data acquisition technologies allowing to collect massive amount of data with relatively low cost. is new feature leads Donoho to define the twenty-first century as the century of data. A major characteristic of this modern data set is that the number of measured variables is larger than the sample size; the word high-dimensional data analysis is referred to the statistical methods developed to make inference with this new kind of data. This chapter is devoted to the study of some of the most recent ℓ1-penalized methods proposed in the literature to make sparse inference in a Gaussian Markov random field (GMRF) defined …

Markov kernelMarkov random fieldMarkov chainComputer scienceStructured Graphical lassoVariable-order Markov model010103 numerical & computational mathematicsMarkov Random FieldMarkov model01 natural sciencesGaussian random field010104 statistics & probabilityHigh-Dimensional InferenceMarkov renewal processTuning Parameter SelectionMarkov propertyJoint Graphical lassoStatistical physics0101 mathematicsSettore SECS-S/01 - StatisticaGraphical lasso
researchProduct